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Abstract

The development of Bénard cells is studied in fluid-saturated porous enclosures whose bottom (warm) and top (cold) walls are
isothermal, and its lateral walls are cooled. To model the laminar natural convection, the Darcy law with the Boussinesq ap-
proximation is used. The finite difference method is used to solve the resulting differential equations. The energy equation is solved
with the implicit scheme using the ADI method and the stream function equation using the SOR method. The results are analyzed in
terms of the Darcy—Rayleigh number Ra, the Biot number Bi and the initial conditions. The results show that two branches exist
that are related to the Darcy—Rayleigh and Biot numbers. The fluid remains stationary below a certain value of the Darcy—Rayleigh
number, i.e., the state of rest. Two convective solution branches bifurcate from the zero solution in the direction of increasing Ra. If
Ra is increased further, the solutions at Ra ~ 390 become unstable with respect to oscillatory disturbances. © 2001 Elsevier Science

Inc. All rights reserved.

1. Introduction

In recent years a great deal of interest has focused on the
knowledge of the natural convection mechanism in a fluid
saturated porous medium. Studies have been made on different
geometries and heating conditions. Especially, the transition
between unicellular and multicellular convection has attracted
attention. Moya and Ramos (1987) performed a numerical
study of natural convection in a tilted rectangular cavity to
demonstrate the existence of multiple steady-state solutions.
Zhang (1992) studied the duality of solutions on natural con-
vection in an inclined water-saturated porous cavity in the
presence of density inversion. These studies focused on the
influence of the tilt angle.

The convective instabilities of a horizontal porous layer
heated from the below have been investigated by several au-
thors (Combarnous and Bories (1975); Caltagirone (1975);
Cheng (1978)). It is now well known that the onset of con-
vection takes place at a critical Darcy-Rayleigh number,
Ra, = 4n*. The forward bifurcation at Ra = Ra, implies the
loss of stability for the conductive solution with velocity am-
plitude ¥ =0, and the emergence of two stable convective
solutions for Ra > Ra. with a flow in either the clockwise or
counterclockwise direction. If Ra is increased further, two-di-
mensional convection becomes oscillatory (Horne and O’Sul-
livan (1974); Caltagirone (1975)). To define the critical
conditions for the onset of oscillatory convection, Horne and
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O’Sullivan (1974) observed that the flow displays a periodically
oscillatory behavior in the unicellular mode at Ra < 280 while
the corresponding multicellular solutions are steady. Caltagi-
rone (1975) has performed a stability analysis based on a nu-
merical study, which predicted the onset of oscillatory
behavior at Ra = 384 &+ 5 for unicellular flow and at Ra be-
tween 800 and 1000 for bicellular convection in a square cell.

In a later study, Horne and O’Sullivan (1978) investigated
the origin of the oscillatory regime and found that the oscil-
latory flow arises from the instability of thermal boundary
layer on the heated bottom surface. Schubert and Straus (1979)
performed a three-dimensional study and found that in a cube,
unsteady convection starts when Ra exceeds a value between
300 and 320, similar to the unicellular two-dimensional flow in
a square cavity. Another three-dimensional study was per-
formed by Caltagirone et al. (1981) to enumerate various
stable structures for different Rayleigh numbers (Ra < 150)
and aspect ratios. The model, based on the application of
Galerkin’s method, has shown that for the same configuration,
different stationary structures are developed according to the
initial conditions.

A further increase of the Rayleigh number results in dis-
crete flow transitions that increase the spatial as well as tem-
poral complexity of the flow and temperature field, finally
leading to turbulent flow. For instance, the flow field may
undergo the following sequence of changes: steady state —
periodic — quasi-periodic — steady state. In a three-dimen-
sional rectangular cavity filled with fluid media Mukutmoni
and Yang (1995) found that when the Rayleigh number is
increased, the rather counter-intuitive reversion to steady state
from quasi-periodicity, which is steady state — periodic —
quasi-periodic — steady state, is due to spatial changes in the

0142-727X/01/$ - see front matter © 2001 Elsevier Science Inc. All rights reserved.

PII: S0142-727X(01)00107-2



562 E. Bilgen, M. Mbaye | Int. J. Heat and Fluid Flow 22 (2001) 561-570

Notation

aspect ratio (= H/L)

Biot number (= A,L/k)

heat capacity (J kg~' K™')

gravitational acceleration (m s~2)

height of the cavity (m)

convective heat transfer coefficient (W m=2 K ')
permeability (m?)

thermal conductivity of the fluid filled medium
(Wm' K™

width of the cavity (m)

Nusselt number (= AL /k)

pressure (Pa)

Ra Darcy-Rayleigh number (= gfAT'KL/(va))

T temperature (K)

t time (s)

«',v"  fluid velocity in x, y direction (m s~!)

u,v  dimensionless fluid velocity (= uL /o, vL /o)

X',y Cartesian coordinates (m)

X,y dimensionless coordinates in x, y direction

(=x/L,y/L)

Greeks
o thermal diffusivity (= k/(pc,)) (m? s7")

2N RIS A

S

S|

p thermal expansion coefficient of fluid (K1)

AT temperature difference (= 7] — T})

T dimensionless temperature (= (7" — T;)/AT")

u dynamic viscosity (kg m~! s71)

v kinematic viscosity (m? s7')

p fluid density (kg m~?)

T dimensionless time (= t/(cL?/))

¢ porosity

v stream function (m? s~ ')

V] dimensionless stream function (= ¥/’ /«)

a ratio of heat capacities of fluid saturated porous
medium and fluid

Subscript

a atmospheric

b bottom

f fluid medium

1 left

p fluid saturated porous medium

r right

t top

0 reference

Superscript

!’

dimensional variables

mean velocity and temperature fields that accompany the bi-
furcation.

Graham and Steen (1994) studied the beginning of the high
Rayleigh number regime, where convection is dominated by
buoyancy and molecular diffusion plays little part in the bulk
of the flow. Their main result is the observation and study of
instabilities that lead to deviations from the scaling relations.
As the Rayleigh number increases further, the flow undergoes
instabilities that lead to “bubbles’ in parameter space of quasi-
periodic flow and eventually to weakly chaotic flow.

Others have focused on the influence of the Rayleigh
number. Caltagirone (1975) has studied thermoconvective in-
stabilities in a horizontal porous layer. His analysis, based on
the Galerkin method, enables one to determine the critical
conditions of stability for the pure conduction (Ra < 4n?), the
regime of stable convection (Ra<384) and the fluctuating
regime (Ra > 384) for a square cavity. These results agree with
those obtained by Bories (1970) and Combarnous (1970).
Further results can be found for high Rayleigh numbers in the
work of Caltagirone and Fabrie (1989).

It is noted that all the above-mentioned studies have been
done on a horizontal porous layer with the following
physical boundary conditions: isothermal bottom (warm)
and top (cold) walls, and adiabatic lateral walls. Yet in all
the applications, the assumption of adiabatic (or constant
temperature) lateral walls is a simplification of more com-
plex problems. In reality, in most of the practical situations
the lateral walls are non-adiabatic and often non-isothermal.
In fact, the literature review shows that, the condition of
non-adiabatic lateral walls has not been considered, and its
influence on the bifurcation phenomena has not been
studied.

The purpose of the present study is to contribute to the
understanding of the bifurcation phenomena observed in a
horizontal fluid-saturated porous layer with non-adiabatic
lateral walls. In particular, we will consider a saturated
porous layer bounded by two horizontal plates separated by
a height H and subjected to a temperature gradient A7’, and
two vertical walls separated by a distance L and cooled

by convective heat transfer to the surrounding air.
The convective cooling at these boundaries may be described
by
or’
Al
ox’

(T —T7).

2. Mathematical formulation

Fig. 1 shows schematically the physical situation and the
coordinate system.

It is assumed that the fluid is incompressible, the viscous
dissipation is negligible and all thermophysical properties are
constant, except for the density variations in the buoyancy
term as modeled using the Boussinesq approximation. By us-
ing the Darcy model for laminar and two-dimensional flow,
the governing equations are:

p=poll = B(T" = T7)], (1)

V-V =0, (2)
/_ﬁ_‘/ 7=

Vp =2V +pg =0, (3)

Y4 )
/T2
, A i
L, (1) o= M=l
OX ~a Vg
ANy >
T X

Fig. 1. Physical model and system coordinate.
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Table 1
Numerical results®
Caltagirone (1975) Schubert and Straus (1979) Present
Ra Nu Vinax Nu Vimax Nu Y imax
50 1.450 2.112 - - 1.443 2.099

100 2.651 5.377 2.651 - 2.631 5.359
200 3.813 8.942 3.808 - 3.784 8.931
250 4.199 10.253 - - 4.167 10.244
300 4.523 11.405 4.514 - 4.487 11.394

#Nusselt number Nu, maximum value V.. of the stream function for different values of the Rayleigh number Ra and of the aspect ratio 4 = 1.

!

oT q
(pe)y 5, + (pO) V- VT =V - VT, (4)

where 7 is the filtration velocity.
The boundary conditions are:

or’
)Cl:() k7:+hd(T/—T2/) lﬁ':(),
/ aT/ 4 ! !
X =L k&ﬂ:A%JTA—Q) V' =0, (5)
Yy=0 T'=T, ¥ =0,
y=H T =T, J =0
The above equations may be made dimensionless by using
(¥,7) ()L
(xyy):T (uvv):T7
V=V =
12
-1,
el AT
L
dy ox’

where 7] and 7, are the temperature of the bottom and top
walls and it is arbitrarily assumed that 7, = Tj.

As we are considering a two-dimensional problem, it is
convenient to introduce the stream function y defined by
Y. = —v, ¥, =u so that the continuity equation is satisfied
automaticaﬁy. The governing equations for the temperature
and flow fields may be expressed in the following dimensionless
form:

orT

2
— —_Ra—

VY azo (6)
oT oy oT oy or ,
61+6y6x axay_VT O
with the boundary conditions
v=0 L ipr Y =0,

Ox

or .
x=1 6;:—&T Y =0, (8)
y=0 T=1, ¢y=0,
y=A4 T=0, y=0.

From the above equations, it appears that the problem is
governed by the following parameters: the Darcy-Rayleigh
number Ra, the Biot number Bi, the aspect ratio 4 and the
initial conditions.

The average Nusselt number at the bottom and top walls is

Lar
Nuy, — — / > )
o Oy

y=0,4

and at the cooled lateral walls

1 r*or
Mmf‘zl'a

The heat flux (07 /0x;)(x; = x, ) is calculated by a Taylor series
expansion with four points. For a good accuracy, the inte-
gration was evaluated by a combination of the Simpson’s 1/3
and 3/8 rules for an odd number of intervals and only 1/3 rule
for an even number of intervals.

dy. (10)

x=0,1

3. Numerical method

Egs. (6) and (7) describing the flow and temperature fields
of this problem were solved numerically using a finite-differ-
ence discretization procedure. Central-difference formulae
were used for all spatial derivative terms. A modified alternate
direction implicit procedure was used to solve the temperature
equation. The finite-difference form of energy equation was
written in conservative form for the convective terms to pre-
serve the conservative form property (Roache, 1982). The
stream function equation was solved by a successive over-
relaxation method. The velocity field was obtained by inte-
gration of the stream function.

The boundary conditions for the energy equation in dif-
ferential form may be written in finite difference form em-
ploying one-sided differences or a fictitious grid point outside
the region. However, a greater accuracy and often more flex-
ibility is obtained by considering the grid control volume
which ensures, for a surface grid point, the energy and mass
conservations. The energy equation (7) is integrated in the first
control volume of the boundary and the final equation after
applying the divergence theorem as

0 R o — —
—/Td“//+/VT~dS=/VT-dS, (11)
ot Jy s s

where 7~ and S are the volume and the surface of an element,
respectively.

To start a solution, an initial sinusoidal perturbation of
stream function field or a well-established flow for a given Ra
number is introduced to drive the solution. The iterative
convergence of the stream function and temperature is
checked by comparing two successive iterations n» and n + 1
at any node

max { ‘ lﬂnJrip; l//n

The steady state was reached when the maximum of the frac-
tional changes in ¥/, ¥,,;, and in the bottom Nusselt number
Nuy, between time steps of (k) and (k — 10) are expressed as

Tn

‘ Tn+l —Tn
)

}<1W? (12)
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Table 2
Initial conditions, Ra and Bi range, number of cells and circulation mode and reference to figures for various cases®
Initial conditions Condition of computation No. cells and circulation mode Remark Figure
From rest state Ra=0—100,Bi=0 1 cell N 1 cell at Ra > 4n° 2
Solution from higher Ra Ra=100—-0,Bi=1—-5 1 cell N SB
Ra=100—0,Bi=0 1 cell N N-SB
stable at Ra < 80
1 or2cells N
2 cells, Ra = 100, Bi =1 Ra=100— 0, Bi=1 2 cells N SB
1 cell, Ra =100, Bi =0 Ra =100 — 0, Bi=0.5 1cell N N-SB
1 cell, Ra = 100,Bi =0 Ra =100 — 0 1 cell N N-SB
1cell N Ra=100—0,Bi=0— 0.7 1cell N N-SB 3
Ra=400, Bi=0 Ra =100 — 0, 1 cell N SB 3
Bi=08—1.1
Ra=400—0,Bi=0—1 1cell N oscillating cell at 4
Ra = 370
2 cells A-N 6,7
(a) Ra =100, Bi =0 Bi<0.8 A-N
Bi > 0.8 N
(b) Ra=100, Bi=0.2 Bi<04 1 cell A-N
0.4 < Bi<0.8 2 cells N
Bi > 0.8 2 cells N
(¢) Ra=250, Bi=0 Bi<0.95 2 cells A-N
Bi > 0.95 2 cells N
A-N Ra =250, Bi=0.95 4 cells— 2 cells 8,9
Ra=250, Bi=0 A-N—=N
2 cells A-N Bi<04 N
Ra=100, Bi=0.2 04 < Bi<0.8 A-N
0.8 <Bi<I.1 N
2 cells A-N Ra 0=1500 10,11
Ra=250, Bi=0 Bi=0.1—1
Bi=0.1, Ra > 40 2 cells A-N UB
Bi=0.1, 70 < Ra < 80 1 cell A-N
Bi=0.1, Ra > 80 2 cells A-N
Bi=0.1, Ra > 70 2 cells A-N LB
Bi=0.2, Ra > 60 2 cells A-N UB
Bi=0.2, 60 < Ra < 70 1 cell A-N
Bi=0.2, Ra < 80 2 cells A-N
Bi=0.2, Ra > 40 2 cells A-N LB
Bi=0.2, 60 < Ra < 70 1 cell A-N
Bi=0.2, Ra < 80 2 cells A-N
Bi=0.5, Ra < 80 2 cells A-N SB
Bi=0.5, 80 < Ra < 90 1 cell A-N
Bi=0.5, Ra <90 2 cells A-N
Bi=1,0 < Ra<250 2 cells A-N SB
2 cells A-N Ra=100—0,Bi=0—1
Ra =100 — 0 Bi=1
2 cells A-N Ra =250 —0, Bi=0.1
Ra=250, Bi=0 Ra =0 — 250, Bi=0.1
Ra < 50 2 cells A-N
50 < Ra < 60 1 cell A-N
Ra >80 2 cells A-N
2 cells A-N Ra =250 -0, Bi=0.2
Ra=0— 250, Bi=0.2
Ra < 50 2 cells A-N
50 < Ra < 60 1 cell A-N
70 = Ra <250 2 cells A-N
2 cells A-N Ra =250 — 0, Bi=0.5
Ra=250, Bi=0 Ra =0 — 250, Bi=0.5
Ra <80 2 cells N
90 > Ra <200 2 cells A-N
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Table 2 (Continued)

Initial conditions Condition of computation No. cells and circulation mode Remark Figure
2 cells A-N Ra =250 — 0, Bi=1 N
Ra=250, Bi=0 Ra=0— 250, Bi=1 N
2 cells A-N 12
Ra=500, Bi=0 Ra =0 — 500, Bi=0

40 < Ra < 500 2 cells N oscillation at Ra > 440

Ra =500 — 0, Bi=0 2—1—2cells N-SB

Ra > 70 2 cells N LB

Ra =0 — 500, Bi=1 2 cells A-N SB

Ra =500 — 0, Bi=1 SB

Ra < 260 2 cells A-N

260 < Ra < 270 1 cell A-N

Ra > 270 4 cells N

#N=Natural circulation, A-N=Anti-Natural circulation, SB=Symmetric Branch, N-SB=Non-Symmetric Branch, UB= Upper Branch,

LB = Lower Branch.
k k—10 k k—10
wmax — lplfnax lpmin — l//min

max { lpk—'lo lpkfl() }
<107, (13)

k (—10
‘ Nuf — Nuf
g 10
Nuy;

)

To achieve the desired accuracy and the numerical stability, a
small time step (At = 1073-10~*) was used. The discretization
scheme of the governing equations is second-order accurate.
The uniform mesh sizes were used in both x and y directions,
and were varied from 41 x 41 to 81 x 81 depending on the
strength of convection. Independence of solution on the grid
size was studied for various cases. For instance, with 4 = 1, for
Ra =100 and Bi=0.1, five different grid sizes from 21 x 21 to
101 x 101 were tried. The results showed that grid indepen-
dence was achieved above 41 x41 showing negligible differ-
ences in Y, (0.01%) and the same multiple steady states were
produced. Caltagirone (1975) has used 24 x 24 to 48 x 48 and
the corresponding range of Ra was from 0 to 2000. A test of
accuracy of the present numerical program was made by
comparing with the results reported by Caltagirone (1975) and
Schubert and Straus (1979) for the limiting case Bi = 0. Table
1 shows an excellent agreement with less than 1% deviation.

4. Results and discussion

Numerical experiments were carried out for 0 < Ra < 500,
0 < Bi < 5 and for the aspect ratio of 4 =1, with various initial
conditions. For most of the experiments, the data were ob-
tained by increasing or decreasing the Darcy—Rayleigh num-
ber, Ra, by using an increment of 10, from 0 to 100 or from 100
to 0, respectively, and some Ra up to 500. The initial condi-
tions for the first run were the rest state and those of the lower
branch from steady-state solutions at higher Ra values. All
subsequent runs were performed with initial conditions at the
previous state. The initial conditions and observations for
various cases are presented in Table 2.

A multiplicity of steady-state solutions is manifested in the
present situation. This is characterized by the flow in the
cavity, which will be identified by a variable stream function
defined as

Ve = Emax [Y(x, )|, (14)

where the positive and negative signs correspond to counter-
clockwise and clockwise circulation, respectively.

If the multiple states are stable to small perturbations, they
may exist in practice as shown experimentally for flow in
natural convection loops (see, for example, Bau and Torrance
(1981)). Usually, initial conditions determine the final steady

state obtained when multiple steady states exist. To charac-
terize the flow, the terminology followed in the literature (see,
for example, Moya and Ramos, 1987) is used. Flows which can
develop from rest and uniform temperatures as initial condi-
tions will be referred to as ‘natural circulation” and those that
circulate in a direction opposite to this will be called ‘anti-
natural circulation’. These terms are useful to help visualize
possible flow modes associated with physically realizable sit-
uations. In addition, the terms ’symmetrical’ and ‘non-sym-
metrical’ branches are used to describe identical flow fields but
with counterclockwise and clockwise circulations. ¥, is pos-
itive for the former and negative for the latter.

Fig. 2 shows ., as a function of the Darcy-Rayleigh
number obtained using Bi numbers from 0 to 5. The calcula-
tions were carried out for Rayleigh increasing from 0 to 100
and Bi = 0, using the initial conditions from the rest state.
Other calculations were carried out for Ra =100 — 0 and
Bi = 0 — 5 using initial conditions from the solutions at higher
Ra. By Eq. (14), the upper and lower branches correspond,
respectively, to the counterclockwise (positive) and clockwise

4L Bi=0,1,2,345 -

5 1 1 1 ] 1 1 1 L

0 10 20 30 40 50 60 70 80 90 100

Ra

Fig. 2. Y as a function of the Darcy-Rayleigh number obtained
using Bi numbers from 0 to 5.
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(negative) motions. When increasing Ra from 0 to 100 and
Bi =0, a steady solution is obtained above Ra = 47 until the
final value of Ra. When decreasing Ra from 100 to 0 and
Bi =1 — 5, two symmetric steady solutions are obtained and
the flows are stable. For Bi = 0, the flow only remains stable
until Ra = 80.

Similarly, ¥, as a function of the Darcy—Rayleigh number
and for Bi =0, 0.5 and 1 and Ra from 100 to 0 was obtained
using initial conditions from the steady-state solutions at
higher Ra. For Bi = 1, the initial condition was with a bicel-
lular flow in the cavity, all the others with unicellular flows. It
was seen that for Bi = 1, symmetrical upper and lower bran-
ches were obtained; for the others with Bi = 0 and 0.5, non-
symmetric, steady solutions were obtained. A similar case is
shown in Fig. 3 where the initial conditions for all the cases
were from the steady-state solutions obtained at Ra = 400,
Bi = 0 with unicellular flow. In this case, symmetrical upper
and lower branches are obtained for Bi = 0.8 — 1.1 and non-
symmetric steady solutions for Bi = 0 — 0.7. When the same
case at Ra = 0 — 400 was examined, it was seen that oscillat-
ing unicellular flows were observed for Bi=0 and 0.1 at
Ra = 400-360 range, which did not exist at lower Ra (see Fig. 4
which has the same initial condition as that of Fig. 3). The
solutions at Ra ~ 360 became unstable with respect to oscil-
latory disturbances and steady or sustained oscillating state
later on. A cross plot of ., as a function of Bi with Ra = 50,
100, 300, 400 as a parameter showed that when increasing Ra
from zero upward to the parametric values, the steady flow
was obtained at Bi = 0.5 for Ra = 50, at Bi = 0.7 for Ra = 100,
Bi = 0.2 for Ra =300 and Bi = 0.1 for Ra = 400. When de-
creasing Ra from the parametric value down to zero, stable
solutions were obtained for Bi > 0.5. Y, as a function of time
for the case of Ra = 400 and Bi = 0 was also examined and is
shown in Fig. 5. The initial condition was a unicellular flow
with Ra = 100. It is seen that the amplitude and the frequency

v. Bi=08to1.1 -
\
> Bi=0t00.7

WL O

5
0 10 20 30 40 50 60 70 &0 90 100
Ra

3 -

Fig. 3. Y as a function of the Darcy—Rayleigh number and various
Bi numbers at the decreasing branch. The initial conditions for all the
cases are from the steady-state solutions obtained at Ra = 400,Bi =0
with unicellular flow. The symmetrical upper and lower branches are
with Bi 0.8 — 1.1. Non-symmetrical upper and lower branches are for
Bi=0—0.7.

15

as A A S
0 40 80 120 160 200 240 280 320 360 400
Ra

Fig. 4. Y as a function of the Darcy—Rayleigh number and various
Bi numbers at the lower branch. The initial conditions are the same as
for Fig. 3.

-13 T T T

as i
6 1t 2 3 4 5 6 7 8 9 10 11 12

Fig. 5. . as a function of time for the case of Ra =400 and Bi = 0.
The initial condition is with Ra = 100 and unicellular flow.

of oscillations are constant when the dimensionless time be-
comes greater than one and it is only one single frequency.
Ve as a function of Bi from zero to 1.1 is shown in Fig. 6,
where Ra is a variable parameter. The initial conditions are all
anti-natural flows and are: (a) Ra =100 and Bi =0, (b)
Ra =100 and Bi = 0.2 and (¢) Ra = 250 and Bi = 0. It is seen
that the upper and lower branches are symmetrical for (a) and
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02 03 04 05 06 07 08
Bi

Fig. 6. ., as a function of Bi with Ra as a variable parameter for the
case of 4=1. Initial conditions are: (a) Ra=100 and Bi=0, (b)
Ra=100 and Bi=0.2, and (c) Ra=250 and Bi=0.

0.1

(c). For case (b), the flow is bicellular anti-natural when
0 < Bi < 0.4, unicellular natural when 0.4 < Bi < 0.8 and bicel-
lular natural when Bi > 0.8. For the case (c), similarly, it is
bicellular anti-natural when Bi<0.95 and bicellular natural
when Bi > 0.95. Hence, there is a transition from anti-natural
to natural flow around Bi ~ 0.95. This phenomenon can be
examined by plotting the streamlines and isotherms. Fig. 7
shows the streamlines (solid lines) and the isotherms (dash-dot
lines) for this case where Ra = 250 and Bi = 0 — 1.1. The so-
lutions for Bi = 0 — 0.9375 are anti-natural and for Bi = 0.95
there is a transition from the anti-natural to natural circula-
tion. For Bi =0.975 — 1.1 they are all natural circulations.
The isotherms show that as Bi increases from 0 to 0.9375, the
temperature gradient in the vertical direction decreases and
when Bi = 0.95, as the transition occurs from anti-natural to
natural circulation, the isotherms become almost a mirror
image of those at Bi = 0.9375. The streamlines show a similar
trend.

To examine further the evolution of flow from anti-natural
to natural, the streamlines (a) and isotherms (b) with time, ©
from 2.56 to 3.50 are presented in Fig. 8 for the case of
Ra = 250, Bi = 0.95. The initial conditions are from an anti-
natural flow with Ra = 250, Bi = 0. The evolution from the
anti-natural flow to that natural is noted at t > 2.70. The
streamlines show that at t = 2.56, there are four cells, the main
two in the center in an anti-natural circulation. As 7 increases,
first, the two side cells become equally important as the center
cells, then, the side cells dominate the flow field with natural
circulation at 7 > 2.70. Similarly for isotherms on the right-
hand side: the change of isotherms in the center from © = 2.66
to 2.70 shows clearly how the energy transport shifts from two
sides to the center.

The evolutions of ¥, , Vi, and Nu as a function of time
(t =0 — 3.5) were also examined for the case of Fig. 8. The
results are shown in Fig. 9, ., Nu at the top and bottom and
Nu at the left and right walls presented at (a), (b) and (c), re-
spectively. The initial conditions are the same as of Fig. 8,
from an anti-natural flow with Ra = 250 and Bi = 0. Fig. 9(a)
shows clearly the evolution of V., from the anti-natural to
natural flow at 7 > 2.70. Fig. 9(b) shows the evolution of heat
transfer Nu at the top and bottom of the cavity, while Fig. 9(c)

Fig. 7. (a) Streamlines (solid lines) and (b) the isotherms (dash-dot
lines) for the case of 4 = 1, Ra = 250 and variable Bi = 0 — 1.1. At the
left, it is the case for anti-natural solution (Bi=0, 0.9, 0.925 and 0.9375
from top to bottom) and at the right, natural solution (Bi=0.95, 0.975,
1.0, 1.1 from top to bottom).

that at the lateral walls. It is seen that as expected, Nu at the
top and bottom increases as the flow becomes with natural
circulation carrying heat from the bottom to the top more
effectively, and at the same time, Nu at the lateral walls
decreases.

Similar results were obtained for the case of Ra = 100,
Bi = 0.8 using initial conditions from an anti-natural flow with
Ra =100 and Bi = 0. The evolutions of .., ¥in and Nu at
bottom, top and side walls as a function of time (t = 0 — 7.0)
showed that the transition from the anti-natural to natural
flow occurred at T > 3.30 with similar observations regarding
Ve and Nu.

To see the effect of various Bi = 0.1 — 1.0 on the flow as a
function of Ra, V., was calculated, and is shown in Fig. 10.
The initial conditions are from the steady-state solutions ob-
tained for Ra = 250, Bi = 0 and anti-natural bicellular flow.
Solutions at upper and lower branches were all obtained with
250 — 0. For Bi = 0.1, the upper and lower branches are non-
symmetric, and steady state for Ra > 40 and 70, respectively.
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(a) (b)

Fig. 8. (a) Streamlines and (b) isotherms for the case of Ra = 250,
Bi = 0.95 with time, from 2.56 to 3.50 (t =2.56, 2.66, 2.70, 2.72 and
3.50 from top to bottom).

For upper branch, 70 < Ra < 80, the flow becomes unicellular
and Ra > 80 anti-natural circulating two cells. For lower
branch, 70 < Ra < 80, the flow is unicellular and for Ra > 80,
bicellular anti-natural circulation. For Bi=0.2, a similar ob-
servation is made, with steady state unicellular flow at Ra > 40
and 60 at lower and upper branches, respectively. They are
non-symmetric: For example at the upper branch, for
60 <Ra <70 unicellular anti-natural circulation and for
Ra > 80 it is bicellular anti-natural circulation. For Bi=0.5
the upper and lower branches are symmetrical and identical.
For Bi=1.0, it is noticed that the solutions at upper and lower
branches are also the same and are symmetric. To confirm the
observations made, the streamlines and isotherms were traced
for each Bi. For example, the streamlines (solid lines) and
isotherms (dash-dot lines) for the case of Bi = 0.1, anti-natural
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Fig. 9. Evolutions of /s, ¥min (@), and Nu at the top and bottom (b),
Nu at the lateral walls (c) as a function of time (t = 0 — 3.5) for the
case of 4 = 1, Bi = 0.95, which is the same case of Fig. 6.
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Fig. 10. ., as a function of Ra for the case of 4 =1 and various
Bi=0.1— 1.0.
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Fig. 11. (a) Streamlines (solid) and (b) isotherms (dash—dot) for the
case of Bi = 0.1, anti-natural circulation at various Ra = 20 — 250
(starting at the top, from left to right: Ra=20, 40; Ra=50, 60;
Ra =80, 90 and Ra=100, 250).

flow at various Ra = 20 — 250 are shown in Fig. 11(a) and (b).
It is seen that following the observations made with Fig. 10,
the flow is bicellular, anti-natural for low Ra numbers; for
Ra > 40, the flow becomes unicellular and for Ra > 80 it be-
comes bicellular and anti-natural flow. Similar corroborating
observations were also made for the other cases presented and
discussed with Fig. 10.

Fig. 12 shows ¥, as a function of Ra from 0 to 500 for the
case of 4 = 1 and Bi = 0 and 1. The initial conditions are from
the steady-state solutions obtained for Ra = 500, Bi = 0 and
bicellular anti-natural flow case. Solutions are obtained with
Ra=0—500 and Ra=500—0, Bi=0 and 1. For
Ra =500 —0 and Bi=1, upper and lower branches are
symmetric, for Ra <260, it is bicellular anti-natural circula-
tion, for 260 < Ra < 270 it is unicellular anti-natural and for
Ra = 270 it is natural circulating four cells. For Ra = 0 — 500
and Bi=1, upper and lower branches are also symmetric with
anti-natural circulating two cells. For Ra =500 — 0 and
Bi=0, upper and lower branches are non-symmetric and
steady state for Ra > 40 and 70, respectively. They become
anti-natural circulating two cells at Ra > 80 and 70, respec-
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-10
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Ra
Fig. 12. ., as a function of Ra from 0 to 500 for the case of 4 =1

and Bi =0 and 1.

tively. For Ra = 0 — 500 and Bi=0, at Ra > 40, natural cir-
culating two cells exist. At Ra > 440, an oscillation is noted.

5. Conclusions

The development of Bénard cells is studied in a fluid-satu-
rated porous enclosure whose bottom (warm) and top (cold)
walls are isothermal and its vertical end walls are cooled. The
results are analyzed in terms of the Darcy—Rayleigh number
Ra, the Biot number Bi and the initial conditions. The results
show that two branches exist that are related to the Darcy—
Rayleigh and Biot numbers. The fluid remains stationary be-
low a certain value of the Darcy-Rayleigh number. Two
convective solution branches bifurcate from the zero solution
in the direction of increasing Ra. If Ra is increased further, the
solutions at Ra ~ 390 become unstable with respect to oscil-
latory disturbances.
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